A Fitted Operator Finite Difference Approximation for Singularly Perturbed Volterra–Fredholm Integro-Differential Equations

نویسندگان

چکیده

This paper presents a ε-uniform and reliable numerical scheme to solve second-order singularly perturbed Volterra–Fredholm integro-differential equations. Some properties of the analytical solution are given, finite difference is established on non-uniform mesh by using interpolating quadrature rules linear basis functions. An error analysis successfully carried out Boglaev–Bakhvalov-type mesh. experiments included authenticate theoretical findings. In this regard, main advantage suggested method yield stable results layer-adapted meshes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Finite difference method for solving partial integro-differential equations

In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...

متن کامل

An Exponentially Fitted Method for Singularly Perturbed Delay Differential Equations

This paper deals with singularly perturbed initial value problem for linear first-order delay differential equation. An exponentially fitted difference scheme is constructed in an equidistant mesh, which gives first-order uniform convergence in the discrete maximum norm. The difference scheme is shown to be uniformly convergent to the continuous solution with respect to the perturbation paramet...

متن کامل

Fitted Mesh Method for a Class of Singularly Perturbed Differential-Difference Equations

This paper deals with a more general class of singularly perturbed boundary value problem for a differential-difference equations with small shifts. In particular, the numerical study for the problems where second order derivative is multiplied by a small parameter ε and the shifts depend on the small parameter ε has been considered. The fitted-mesh technique is employed to generate a piecewise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10193560